Search a number
house numbers
The  $n$-th house number  $h_n$  is a figurate number made by a cube of side  $n+1$, surmounted by a square pyramidal number with side  $n$, thus  $h_n = (n+1)^3 + \sum_{k=1}^nk^2$  or
\[h_n=(8 n^3+21 n^2+19 n+6)/6.\]

It holds  $\sum_{k=0}^{\infty}{h_k/2^k} = 64$.

The first house numbers are 1, 9, 32, 78, 155, 271, 434, 652, 933, 1285, 1716, 2234, 2847, 3563, 4390, 5336, 6409, 7617, 8968 more terms

House numbers can also be... (you may click on names or numbers and on + to get more values)

ABA 32 aban 32 78 155 271 434 652 + 561123000943 abundant 78 1716 5336 8968 10470 25884 + 46996332 admirable 78 6308092 alternating 32 78 434 652 32103 105092 + 50521016 amenable 32 652 933 1285 1716 5336 + 994445684 apocalyptic 434 1285 2234 2847 4390 5336 + 28882 arithmetic 78 155 271 434 933 1285 + 9867520 binomial 78 1716 7759830 c.square 1582421 canyon 434 6409 7617 32103 654278 874234 congruent 78 271 434 933 1285 1716 + 9272286 constructible 32 1285 Curzon 78 933 20525 78338 91061 155673 + 197241353 cyclic 271 933 1285 3563 6409 12131 + 9716393 D-number 933 7617 d-powerful 874234 2596375 9272286 de Polignac 12131 165425 197107 245309 516037 1582421 + 81473093 deficient 32 155 271 434 652 933 + 9716393 dig.balanced 78 434 652 2234 10470 35555 + 189512709 Duffinian 32 155 1285 2847 3563 6409 + 9716393 eban 32 economical 32 155 271 1285 3563 12131 + 16838677 emirpimes 155 933 2234 3563 7617 51833 + 99402731 equidigital 32 155 271 1285 3563 12131 + 16838677 esthetic 32 78 434 evil 78 652 933 1285 1716 2234 + 997739002 Friedman 1285 frugal 1175056 178825984 gapful 10470 20525 120495 232596 559700 758952 + 97790688541 Gilda 78 happy 32 1285 2847 3563 5336 6409 + 9418784 Harshad 13959 15962 32103 220330 315859 454895 + 9991438059 hex 271 hexagonal 7759830 hoax 18148 165425 258477 12862147 19102392 23945359 + 83980587 iban 271 10470 23101 47377 72447 idoneal 78 impolite 32 inconsummate 933 1716 5336 25884 32103 43184 + 654278 interprime 933 2847 6409 10470 12131 39246 + 95211790 Jordan-Polya 32 junction 1716 7617 112618 516037 705321 1494428 + 99402731 katadrome 32 652 Lehmer 1285 Leyland 32 lucky 933 1285 23101 197107 516037 1538005 + 9566817 magnanimous 32 metadrome 78 modest 933 3563 35555 220330 8289108 Moran 6308092 7008923 15777182 27994726 mountain 271 1285 3563 15962 128731 286210 1368651 nialpdrome 32 652 933 nonagonal 319118031 nude 155 1288848 13413636 oban 78 933 odious 32 155 271 434 3563 4390 + 984609228 palindromic 434 28882 339585933 panconsummate 78 271 pandigital 78 13600909 pernicious 155 271 434 4390 6409 7617 + 9867520 plaindrome 78 155 2234 35555 power 32 1175056 powerful 32 1175056 practical 32 78 1716 56560 232596 331422 + 9867520 prim.abundant 78 5336 8968 6308092 prime 271 productive 652 pseudoperfect 78 1716 5336 8968 10470 25884 + 758952 Ruth-Aaron 78 253313950 self 28882 35555 78338 105092 137334 165425 + 965131337 semiprime 155 933 1285 2234 3563 7617 + 99402731 Smith 25884 56560 258477 582426 12862147 17946747 + 83980587 sphenic 78 434 2847 4390 6409 15962 + 96595409 square 1175056 strobogrammatic 8968 super-d 12131 66859 78338 105092 128731 454895 + 9566817 tau 25884 56560 146312 495084 5448560 13413636 + 958696256 triangular 78 7759830 twin 271 uban 32 78 Ulam 155 434 4390 15962 47377 61566 + 8841922 undulating 434 unprimeable 1716 15962 28882 35555 78338 84540 + 9418784 untouchable 1716 25884 56560 78338 84540 105092 + 758952 wasteful 78 434 652 933 1716 2234 + 9867520 weak prime 271 Zumkeller 78 1716 5336 8968 10470 39246 + 84540