Search a number
Carmichael numbers
Carmichael numbers are composites such that  $a^{n-1}\equiv 1\pmod n$  for every  $1<a<n$  coprime to  $n$, and thus cannot be found to be composite using Fermat's little theorem criterion.

A composite  $n$  is a Carmichael number if and only if it is squarefree and, for every prime  $p$  dividing  $n$,  $p-1$  divides  $n-1$.

Carmichael numbers must be odd and have at least 3 prime factors.

If for a certain  $k$  the 3 numbers  $6k+1$,  $12k+1$  and  $18k+1$  are prime, then their product is Carmichael number.

The first Carmichael numbers are 561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, 41041, 46657, 52633, 62745, 63973 more terms

Carmichael numbers can also be... (you may click on names or numbers and on + to get more values)

aban 561 31992000001 58728000241 110592000001 + 218295000001 530598000241 alternating 561 10585 278545 1050985 + 41298985 547652161 amenable 561 1105 1729 2465 + 993420289 993905641 apocalyptic 1105 2821 6601 8911 + 15841 29341 arithmetic 561 1105 1729 2465 + 9613297 9890881 binomial 561 8911 10585 41041 + 906414656491 921323712961 c.decagonal 2704801 392099401 1030401901 2367379201 369309612001 c.heptagonal 29020321 127664461 c.nonagonal 8911 10585 41041 115921 + 906414656491 921323712961 c.pentagonal 399001 1746692641 c.square 1105 c.triangular 512461 3858853681 congruent 561 1105 2465 2821 + 9494101 9585541 Cunningham 1729 46657 2433601 2628073 + 422240040001 432081216001 Curzon 561 2465 151530401 174352641 cyclic 561 1105 1729 2465 + 9613297 9890881 d-powerful 2465 278545 3146221 de Polignac 2465 63973 126217 252601 + 84350561 92625121 decagonal 1105 6601 748657 5481451 + 944553164101 953828131201 deceptive 1729 2821 6601 8911 + 99947925121 99976607641 deficient 561 1105 1729 2465 + 9613297 9890881 dig.balanced 10585 15841 162401 838201 + 184353001 193910977 Duffinian 1105 8911 15841 29341 + 9585541 9613297 economical 10585 15841 1193221 1461241 + 15829633 19384289 equidigital 10585 15841 1193221 1461241 + 15829633 19384289 evil 561 1105 8911 101101 + 986088961 993905641 Friedman 46657 gapful 561 1729 41041 101101 + 97492534321 99678195865 happy 62745 252601 658801 670033 + 6189121 9439201 Harshad 1729 2465 2821 8911 + 9216037441 9456330241 heptagonal 670033 173085121 9836283601 hex 8911 172081 7995169 43331401 + 1193229577 50886982081 hexagonal 561 8911 10585 115921 + 906414656491 921323712961 hoax 656601 27336673 37167361 93614521 Hogben 5310721 2278677961 9593125081 29859667201 iban 41041 101101 410041 interprime 15841 126217 656601 1193221 + 76595761 88689601 junction 126217 552721 997633 8355841 + 96895441 99830641 Kaprekar 670033 Lehmer 561 1105 1729 2465 + 999607982113 999629786233 lucky 1105 2821 6601 10585 + 9439201 9890881 magic 1105 2465 magnanimous 2465 6601 modest 340561 mountain 561 2465 2821 15841 nialpdrome 997633 octagonal 2465 2821 15841 162401 + 870142775041 952910081761 odious 1729 2465 2821 6601 + 990893569 993420289 palindromic 101101 pernicious 1729 2465 2821 6601 + 8927101 9890881 persistent 17392546081 61280451937 Poulet 561 1105 1729 2465 + 999607982113 999629786233 Proth 1729 8355841 40280065 53282340865 repunit 5310721 2278677961 9593125081 29859667201 Ruth-Aaron 182356993 2320690177 3203895601 779065788865 self 52633 334153 488881 658801 + 955134181 958762729 Smith 656601 27336673 37167361 93614521 sphenic 561 1105 1729 2465 + 96895441 99036001 star 258634741 strobogrammatic 101101 super-d 10585 172081 252601 314821 + 7995169 9890881 taxicab 1729 triangular 561 8911 10585 41041 + 906414656491 921323712961 Ulam 41041 101101 294409 1461241 + 4463641 6733693 unprimeable 449065 825265 1050985 2531845 + 6054985 9582145 wasteful 561 1105 1729 2465 + 9613297 9890881 Zeisel 1729 294409 56052361 118901521 + 727993807201 856666552249